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A problem of reflection of a short wave from a caustic is studied. Approximate 
equations are derived in which the principal nonlinear term is retained. A 
solution is obtained for an arbitrary incident wave in the linear approximation, 
and this makes possible a description of the reflected wave. A qualitative de- 

deduction is made about the influence of the wavelength of the arriving wave 
containing a strong discontinuity, on the amplitude of the reflected signal. 

Let us consider a plane problem of propagation of a short sound wave in an in- 
homogeneous medium. We shall assume that the wavelength h is much smaller than 
the characteristic dimension L of the inhomogeneous medium. Under these con - 

ditions , the approximation of geometrical acoustics holds. Let the rays along which 
the signal propagates, have an envelope. This envelope shall be called the caustic. 
The approximation of geometrical acoustics breaks down in the neighborhood of this 
caustic. Using the method of matching the inner and outer asymptotic expansions, we 
can construct a solution of the wave equation near the caustic Cl, 2 [. The thickness of 
the boundary layer I will have the order of x (L/h)“3. If a strong discontinuity is 
present in the wave arriving at the caustic, then the solution describing the reflected 
wave will contain a logarithmic singularity [3 ] caused by the fact that the wave equation 

itself is a linear approximation of the gasdynamic equations. Nevertheless, in spite of 

this, the linear solution helps to elucidate the qualitative pattern of the flow near the 
caustic and to extract useful informationconcerning the character of reflection of the 
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short waves from the caustic. 
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Let the caustic be defined by the following equations in the Cartesian X, Y, 
t -coordinates : 

x = f (t), Y = g (t) 

We pass to the intrinsic coordinate system moving along the caustic together 

with the wave (Fig. 1) 
5 = (X - f (t)) cos 8 + (Y - g (t)) sin 8 

11 = - (X - f (t)) sin 8 + (Y - g (t)) cos 0 

where 8 is the angle between the normal to the caustic and the ordinate. The 5 - 
axis is oriented along the caustic in the direction opposing the motion of the coordinate 
system, and the q -axis is directed along the normal to the caustic, towards the ar - 

riving wave. 
The gasdynamic equations in this coordinate system have the form ( 8 denotes 

the angular rate of rotation of the coordinate system, and a, is the speed of sound at 

the caustic ) 
8P at ~-I- (nc -+ u + q0’) g + (v - W’) TV- -I- p 

( 
2 

dL’ 

-+F =O ) 
(1) 

au 
at - VW -_1-. (UC j- u -+ 118’) s + (v - Qy) $ + $ g = 0 

g -t- u,’ -t- (UC + u + Tp) + 
&I 1 3P 

+ (21 - WI 5 + yq- -&- =O 

+ -t (u, + u -+ $3’) -$- + (v - 49’) -& = 0 

Since the coordinate system moves together with the wave, therefore the time- 
dependent changes caused by dispersion of the rays will be proportional to a, / L, while 
the variations in E and q will be proportional to i/ h and i 11 respectively. 
Since h I L 4 i and 2 I L = (h / L)‘“< 1, the motion is steady in the first approxi - 

mation, We also assume that the perturbations in all the quantities are small, namely 

u 4 a,, v -=Z a,, P - PO 4 PO* P - p. gpo. Then, instead of (1)we obtain, in the basic 

order, 

(2) 

The first equation of the system (1) yields, in this approximation. a relation 
which follows from those given above. The first and second equations of (2) together 

au I ag - au/ aq = 0 (3) 

and this shows that u is of the order of UX i 1. The first and third equations of (2) 

give the linearized Bernoulli integral 

aa = a02 (11) - (x - 1) Q,U (4) 

We see that in the first approximation the streamlines coincide with the lines 

Tl=const. , and we note that 
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where R, and Rr denote the radii of curvature of the caustic and of the rays, res- 
pectively . Using (4) and the last relation we obtain from (1) the following expressions : 

( x+1 au av 
a 

c 
u++ -q---aq 

> 
-_=o * &z(g-) (5) 

Equations (3 ) and (5) together form a closed system. Let us rewrite them in the 
dimensionless variables 

f3U’ ad 

C”‘+Y)x- ay -=o 
ad auf 

9 x-q=0 (6) 

u’ = (x + 1) + R, R V¶ 

c 1 
v’= (Xf 1) f- -j- ( ) x = 4/h, y = rlll 

c 

The boundary conditions for the system (6) are obtained from geometrical 
acoustics. At large negative Y the perturbations u’ and u’ should tend to zero. 
At large positive y we have a signal arriving at the caustic in the form 

uf = - py -‘l&f (x _I- a/*y~‘2) (7 ) 

The quantity u characterizes the amplitude of the signal. Equations analogous to 

(6 ) were obtained in a slightly different manner in [4-6 1. 
From the analytic point of view the system (6) appears to be complicated. We 

shall explain the qualitative aspects of the phenomenon using a linear formulation of 
the problem of reflection of a wave from the caustic. With this in mind, we introduce 

the velocity potential and instead of (6) , we write 

aw aw 
Y- a22 -FE0 

(8) 

Following [7 3, we solve (8 ) using the method of Fourier transforms. This yields 
+m 

1 
CD’== s e-ior k (a) A i (- 1 o i”‘y) &I 

-02 

(9) 

where Ai (t) is the Airy function decaying exponentially with t - + co. The boun- 
dary condition (7 ) yields 

+cO 

k (0) = - l/z p 1 o I-“” (1 + i sign o) .i eioP f (p) dp 

In addition, the asymptotic behavior given by (9) yields, at large Y , the following 
expression for the reflected wave: 

“Id 
+m 

PY 
u=-x s e-imp p (0) dw 

-co 

(10 1 

+-J 

f3 (0) = - i sign 0 c 
t?“‘p f (p) dp, 

Y 
q = x -; y”,’ 

-02 

Thus, using the formula (10 ) we can describe the reflected signal for any input 
signal (7 ). Let us investigate the structure of the reflected signal in the case of a shock 
wave arriving at the caustic, followed by the region of steady flow. 
In this case we have 
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where 0 (P) is the Heaviside function and 6 is a sufficiently large constant. A solu- 

tion of (8 ) was given in C7 1 in terms of the hypergeometric functions. Fig. 2 depicts, 
with a dashed line, the relation u (I) obtained from (9) when y = 1 for ij = 20and 
p= 1. Using the formula (10 ) , we obtain the reflected signal in the form 

Indeed, the nonlinear terms will appear in the vicinity of the logarithmic sin- 
gularity and the latter will be replaced, in the nonlinear solution, by a finite but quite 

significant increase in the signal’s amplitude [8,9 1. The character of the solution how- 
ever depends on the wavelength of the signal arriving at the caustic. 

To explain the influence which a wave of finite length has on the structure of 
the reflected signal, we shall consider the incident wave the form of which is described 

by the formula 

In this case the reflected wave has the form 

P’l -I/, 

( 

(I_ h 
u=- i+T n 

Clearly, the length of the reflected wave will be of the same order as the length 
of the incident wave. For this reason the peak increase in the amplitude of the signal 
will be significantly narrower for a short length wave. Figure 2 shows for comparison 

the graphs of u (5) with?/= 1, for p==i, h = 2O(curve I) and for h -= 1 (curve 2). 

It is clear that the narrow peak is more affected by the nonlinear effects than the wide 
peak. Therefore the increase of the signal amplitude in the nonlinear solution will be 
the smaller the shorter the wavelength of the signal arriving at the caustic. 

Let us consider a case, which is of greatest practical interest, in which the sig- 
nal arriving at the caustic has the form of the A’- wave. In this case we have 

The reflected wave is described by the formula 

The reflected wave has two rapidly decaying logarithmic singularities, both of 
the same sign. The meaning of the quantities introduced clearly implies that the wave- 
length of the signal arriving at the caustic must be of the order of unity when the di - 
mensionless variables x and y are used. The relation u (5) at y = i is,shown 
for p=l,h=l in Fig. 2 (curve 3 ) . The peaks of the increased signal amplitude 

will be quite narrow, therefore the signal amplitude in the reflected and incident wave 
will be of the same order. 

The author thanks 0. S. Ryzhov for his unceasing interest to this work. 
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